Круглый треугольник Рело

Про­ек­тор восьми­мил­лимет­ро­вой кино­плёнки « Луч-2». Именно он был в каж­дом доме, где сами снимали и смот­рели киноэтюды.

В этом мультфильме рас­ска­зы­ва­ется, как геомет­ри­че­ское поня­тие, часто изу­ча­емое на матема­ти­че­ских круж­ках, нахо­дит при­ме­не­ние в нашей повсе­днев­ной жизни.

Колесо… Окруж­ность. Одним из свойств окруж­но­сти явля­ется ее посто­ян­ная ширина. Про­ве­дём две парал­лель­ные каса­тель­ные и зафик­си­руем рас­сто­я­ние между ними. Нач­нём вращать. Кри­вая (в нашем слу­чае окруж­ность) посто­янно каса­ется обеих прямых. Это и есть опре­де­ле­ние того, что замкну­тая кри­вая  имеет посто­ян­ную ширину.

Бывают ли кри­вые, отлич­ные от окруж­но­сти и имеющие посто­ян­ную ширину?

РЕЛО Франц 1829—1905

РЕЛО Франц (Reuleaux Franz) — немец­кий учё­ный. Впер­вые (1875) чётко сформу­ли­ро­вал и изложил основ­ные вопросы струк­туры и кинема­тики меха­низмов; раз­ра­ба­ты­вал про­блему эсте­тич­но­сти тех­ни­че­ских объек­тов.

Рас­смот­рим пра­виль­ный тре­уголь­ник (с рав­ными сто­ро­нами). На каж­дой сто­роне построим дугу окруж­но­сти, ради­у­сом, рав­ным длине сто­роны. Эта кри­вая и носит имя « тре­уголь­ник Рело». Ока­зы­ва­ется, она тоже явля­ется кри­вой посто­ян­ной ширины. Как и в слу­чае окруж­но­сти про­ве­дём две каса­тель­ные, зафик­си­руем рас­сто­я­ние между ними и нач­нём их вращать. Тре­уголь­ник Рело посто­янно каса­ется обеих прямых. Действи­тельно, одна точка каса­ния все­гда рас­по­ложена в одном из «углов» тре­уголь­ника Рело, а  другая — на про­ти­вопо­лож­ной дуге окруж­но­сти. Зна­чит, ширина все­гда равна ради­усу окруж­но­стей, т. е. длине сто­роны изна­чаль­ного пра­виль­ного тре­уголь­ника.

В житейском смысле посто­ян­ная ширина кри­вой озна­чает, что если сде­лать катки с таким профи­лем, то книжка  будет катиться по ним,  не шелох­нувшись.

Однако колесо с таким профи­лем сде­лать нельзя, так как её центр  опи­сы­вает слож­ную линию при каче­нии фигуры по прямой.

Бывают ли какие-то ещё кри­вые посто­ян­ной ширины? Ока­зы­ва­ется, их бес­ко­нечно много.

На любом пра­виль­ном n-уголь­нике с нечёт­ным чис­лом вершин можно постро­ить кри­вую посто­ян­ной ширины по той же схеме, что был построен тре­уголь­ник Рело. Из каж­дой вершины, как из цен­тра,  про­во­дим дугу окруж­но­сти на про­ти­вопо­лож­ной вершине сто­роне. В Англии  монета в 20 пен­сов имеет форму кри­вой посто­ян­ной ширины, постро­ен­ной на семи­уголь­нике.

Рас­смот­рен­ные кри­вые не исчерпы­вают весь класс кри­вых посто­ян­ной ширины. Ока­зы­ва­ется, среди них бывают и несиммет­рич­ные кри­вые. Рас­смот­рим про­из­воль­ный набор пере­се­кающихся прямых. Рас­смот­рим один из сек­то­ров. Про­ве­дём дугу окруж­но­сти про­из­воль­ного ради­уса с цен­тром в точке пере­се­че­ния прямых, опре­де­ляющих этот сек­тор. Возьмём сосед­ний сек­тор, и с цен­тром в точке пере­се­че­ния прямых, опре­де­ляющих его, про­ве­дём окруж­ность. Радиус под­би­ра­ется такой, чтобы уже нари­со­ван­ный кусок кри­вой непре­рывно про­должался. Будем так делать дальше. Ока­зы­ва­ется, при таком постро­е­нии  кри­вая замкнётся и будет иметь посто­ян­ную ширину. Докажите это!

Все кри­вые дан­ной посто­ян­ной ширины  имеют оди­на­ко­вый периметр. Окруж­ность и тре­уголь­ник Рело выде­ляются из всего набора кри­вых дан­ной ширины сво­ими экс­тремаль­ными свойствами. Окруж­ность огра­ни­чи­вает мак­сималь­ную площадь, а тре­уголь­ник Рело — минималь­ную в классе кри­вых дан­ной ширины.

Тре­уголь­ник Рело часто изу­чают на матема­ти­че­ских круж­ках. Ока­зы­ва­ется, что эта геомет­ри­че­ская фигура имеет инте­рес­ные при­ложе­ния в меха­нике.

Смот­рите, это « Мазда RX-7». В отли­чие от большин­ства серий­ных машин в ней (а также в модели RX-8) стоит ротор­ный двига­тель Ван­келя. Как же он устроен внутри? В каче­стве ротора исполь­зу­ется именно  тре­уголь­ник Рело! Между ним и стен­ками обра­зуются три камеры, каж­дая из кото­рых по оче­реди явля­ется каме­рой сго­ра­ния. Вот вспрыс­ну­лась синяя бен­зи­но­вая смесь, далее из-за движе­ния ротора она сжима­ется, поджига­ется и кру­тит ротор. Ротор­ный двига­тель лишён неко­то­рых недо­стат­ков порш­не­вого ана­лога — здесь враще­ние пере­да­ется сразу на ось и не нужно исполь­зо­вать колен­вал.

А это —  грейфер­ный меха­низм. Он исполь­зо­вался в кинопро­ек­то­рах. Двига­тели дают рав­но­мер­ное враще­ние оси, а чтобы на экране было чёт­кое изоб­раже­ние, плёнку мимо объек­тива надо про­тя­нуть на один кадр, дать ей посто­ять, потом опять резко про­тя­нуть, и так 18 раз в секунду. Именно эту задачу решает грейфер­ный меха­низм. Он осно­ван на тре­уголь­нике Рело, впи­сан­ном в квад­рат, и двой­ном парал­ле­лограмме, кото­рый не даёт квад­рату накло­няться в сто­роны. Действи­тельно, так как длины про­ти­вопо­лож­ных сто­рон равны, то сред­нее звено при всех движе­ниях оста­ётся парал­лель­ным осно­ва­нию, а сто­рона квад­рата — все­гда парал­лель­ной сред­нему звену. Чем ближе ось креп­ле­ния к вершине тре­уголь­ника Рело, тем более близ­кую к квад­рату фигуру  опи­сы­вает зуб­чик грейфера.

Вот такие инте­рес­ные при­ме­не­ния, каза­лось бы, чисто матема­ти­че­ской задачи исполь­зуют люди.

Лите­ра­тура

Бол­тян­ский В. Г., Яглом И. М. Выпук­лые фигуры. — М.—Л.: ГТТИ, 1951.

Радема­хер Г., Теп­лиц О. Числа и фигуры: Опыты матема­ти­че­ского мыш­ле­ния. — М.: ОНТИ, 1936. — (Биб­лио­тека матема­ти­че­ского кружка; Вып. 10). — [Пере­из­да­ния: 1938, 1962, 1966, 2020].

Смотри также

Фигуры посто­ян­ной ширины // Матема­ти­че­ская состав­ляющая / Ред.-сост. Н. Н. Андреев, С. П. Коно­ва­лов, Н. М. Паню­нин. — Вто­рое изда­ние, расши­рен­ное и допол­нен­ное. — М. : Матема­ти­че­ские этюды, 2019. — С. 84—85, 319—320.

Другие этюды раздела «Кривые (фигуры) постоянной ширины»