Площадь под синусоидой

Как посчи­тать площадь под сину­со­и­дой? Более точно: площадь, между графи­ком функции $\sin x$ и его «осно­ва­нием».

Ока­зы­ва­ется, эту площадь можно посчи­тать без при­ме­не­ния интегра­лов, по сути — ничего не счи­тая! Стоит только вспом­нить, что функция синуса — нечёт­ная, т. е. $\sin (-x)=-{\sin x}$. На геомет­ри­че­ском языке это озна­чает, что график функции симмет­ри­чен отно­си­тельно начала коор­ди­нат.

Цен­траль­ная симмет­рия под­ска­зы­вает идею модели, иллю­стри­рующую под­счёт площади. На листе бумаги рас­пе­ча­таем график синуса и закра­сим под ним площадь на отрезке $[-\pi/2, \pi/2]$. На «про­зрачке» повто­рим кар­тинку.

Если наложить про­зрачку на бумаж­ный график, то кар­тинки, есте­ственно, совпа­дут. Воткнув канце­ляр­скую скрепку в начало коор­ди­нат, повер­нём про­зрачку на $180^\circ$. Кри­вая синуса совпа­дёт с собой! А вот закрашен­ным, при­чём без наложе­ний, окажется уже весь прямо­уголь­ник $[-\pi/2, \pi/2]\times [-1,1]$. Посчи­тать площадь прямо­уголь­ника, а затем поде­лить попо­лам, — несложно.

Итак, площадь под сину­сом (между графи­ком функции $\sin x$ и его «осно­ва­нием») на участке $[-\pi/2, \pi/2]$ равна $\pi$, а на пол­ном пери­оде, соот­вет­ственно, $2\pi$. Этот факт в сово­куп­но­сти с лепест­ками Робер­валя, о кото­рых будет отдель­ный сюжет, дают спо­соб вычис­лить площадь под аркой цик­ло­иды.

По сути, модель осно­вана на том, что сину­со­ида делит прямо­уголь­ник на две рав­но­ве­ли­кие части. Подоб­ный трюк, оче­видно, можно про­во­дить и с другими нечёт­ными (или сво­дящи­мися к ним) функци­ями.